New NDS production code in JAVA

• Code writing:

Roy Zywina (Mar 2007-Jan 2008) (NNDC contract) Scott Geraedts (2008-2010) Jeremie Choquette (2010-)

Overall guidance: B. Singh

Comments/Reviews: J.K. Tuli, M. Blennau, C.M. Baglin

IAEA-NSDD April 4-8, 2011

Background

- 2007-2008: band drawing code for NDS
- Incorporated in NDS journal Oct 2008
- Currently used in about 75% of the published A chains in NDS
- 2008-2010: continued development of band drawing code for complete tables and drawings.
- October 2010: new JAVA code ready to produce a complete copy of NDS publication with all the details.
 Example displayed at USNDP-2010.

Aims of the new code

- Immediate: an independent new code to produce tables and drawings almost in the same style/format as current NDS.
- Future:
 - evaluators can use this code on their computers (windows, linux or Mac) to produce an NDS copy which can be sent directly sent for review (thereby removing the pre-review versions). The output of this code is much better than that produced by ENSDAT code
 - flexibility and ease of access when making changes to incorporate new ideas or suggestions
 - long-term maintenance of this program should not be timeintensive
 - The program is built to be clear and easy to edit

The workings of the code

- The program (in JAVA) loads an ENSDF-formatted data file for either a complete mass chain or a set of dataset and a <u>control file</u>
- The control file dictates layout and formatting, as well as which datasets, tables and drawings are to be included
- The program generates an output file in LaTeX (drawings in metapost)
- The LaTeX file is converted to PDF format

¹⁸²Lu β⁻ decay (2.0 min) 1982Ki04

Parent: $^{182}Lu;$ E=0.0; T $_{1/2}$ =2.0 min 2; Q=4180 ST; % β =100 Q(g.s.); 4180 200 (syst;2003Au03). ^{182}Lu produced by bombardment of natural tangets and tantalum targets with ^{136}Xe beam at 9 MeV/nucleon.

[†] From Adopted Levels.

$\underline{\gamma}^{(182}\text{Hf})$								
Eγ	E_i^{level}	J_i^{π}	E_f^{lovel}	J ^r	Iγ	Mult.	α	Comments
97.8.2	97.77	2+	0.0	0+	50 10	E2	3.85 7	Mult.: from Adopted Gammas.
224.0 5	321.8	(4+)	97.77	2+	15 7	[E2]	0.198 4	
720.8 5	818.4	(1,2+)	97.77	2+	100 10			
808.1 5	905.9		97.77	2+	50 15			
818.2 5	818.4	(1,2+)	0.0	0+	100 25			

[†] For absolute intensity per 100 decays, multiply by 0.30 3

	β - radiations					
Eβ-	E(level)	$I\beta^{-\dagger}$	Log_ft			
(3.3E+3)	905.9	<15	>6.8			
(3.4E+3)	818.4	<60	>6.2			
(3.9E+3)	321.8	<5	>7.5			
(4.1E+3)	97.77	<20	>7.0			

[†] Only the upper limits can be deduced since there is no knowledge of β feeding to g.s., and there is a large energy gap of \approx 3.3 MeV between Q(β^{--}) and the highest level at 906 keV.

 $^{182}_{72}\text{Hf}_{110}$

$\chi^{(182}W)$ (continued)										
E_i^{level}	J_i^{π}	E_f^{level}	J_f^{π}	E_{γ}^{\uparrow}	I_{γ}^{\dagger}	Mult. [‡]	δ [‡]	α	$I_{(\gamma+ce)}$	Comments
2730.85	(10-)	2273.87 2455.74 2204 54	9- (9-) (8)-	437.1 1 275.1 1 526 2 10	100 18 100 14 <14	Q (D+Q)				
2739.15 2741.66	(10-) (11-)	2225.35 2301.56	(8-) (9-)	513.8 <i>I</i> 440.1 <i>I</i>	100 100 <i>18</i>	Q Q				
2769.26	(10+)	2479.83	(9+) (8+)	289.4 1	100	D+Q				
2775.63	(12+)	2492.76	(11+) (10+)	282.8 I 545 1 2	100	D+Q				
2823.93	(11-)	2563.94	(10-)	260.0 1	100	D+Q				
2884.1	1	100.10597	2+	2784 1	40 11					
2892.1	(1)	100.10597	2+	2792 1	150 90					
2941.0 2972.49	(1,2+) 12-	0.0 2710.93 2486.89	0+ 11- 10-	2941 2 261.6 2 485 6 J	100 20 5 100 20	0				
2980.58 2981.33	(11-) (12-)	2445.98 2507.48 2486.89	(9-) (10-) 10-	534.6 1 473.8 1 494.6 2	100 100 <i>19</i> 38 6	Q				
2996.1	1	100.10597	2+ 0+	2896 1 2996 1	168 35 100					
3027.96	(11-)	2730.85 2455.74	(10-)	297.1 <i>1</i> 575.2 20	100 24 11	(D+Q)				
3078.23	(13+)	2775.63	(12+)	302.5 <i>1</i> 585 8 2	100	D+Q O				Iγ(586γ)/Iγ(302)=1.6 7 in (α ,2nγ).
3080.1	1	100.10597	2+ 0+	2980 1 3080 1	61 18 100					
3106.72	(12-)	2823.93 2563.94	(11-) (10-)	282.8 1 542.5 5	100 53 Ø	(D+Q)				
3112.87	14+	2372.57	12+	740.3 1	100	(E2)		0.00843		B(E2)(W.u.)= $1.7 \times 10^2 5.$ α (K)=0.00678 10. α (L)=0.001277 18. α (M)=0.000297 5. α (N)= $\pi.8.28 \times 10^{-5} 12.$ α (N)= $1.10 \times 10^{-5} 10.$ α (O)= $1.114 \times 10^{-5} 16.$ α (P)= $6.29 \times 10^{-7} 9.$
3163.1	1	100.10597 0.0	2+ 0+	3063 1 3163 1	54 12 100					
3198.1	(1,2+)	100.10597 0.0	2+ 0+	3098 <i>I</i> 3198 <i>J</i>	59 21 100					
3224.53 3269.56	13- (13-)	2710.93	11-	513.6 1 527.9 1	100	Q O				
3319.7 3343.06	(12-) (12-)	2739.15 3027.96	(10-) (11-)	580.6 4 315.1 1	100 100 <i>14</i>	ч (D+Q)				
3365.1	1	2/30.85	(10-) 2+	3265 1 3265 1	43 29 63 17					
3398.33	(14+)	3078.23	(13+)	320.0 1	100	D+Q				
3410.54	(13-)	3106.72	(12+) (12-)	022.7 I 303.8 I	61 18 100 13	Q				
3415.90 3422.1	(12) (1,2+)	2825.95 2492.76 100.10597 0.0	(11-) (11+) 2+ 0+	923.1 1 3322 1 3422 1	88 13 100 53 15 100	D+Q				
3518.04	(14-)	2981.33 2972.49	(12-)	536.7 1	100 20					
3549.99	14-	2981.33 2972.49	(12-) 12-	568.6 10 577.5 1	<22 100 22	Q				

Continued on next page (footnotes at end of table)

NUCLEAR DATA SHEETS

 $^{182}_{74}\mathrm{W}_{108}\text{--}24$

 $^{182}_{74}\mathrm{W}_{108}\text{--}24$

121

Decay Scheme (continued)

Further plan

- Goal is to have the program completed by mid summer 2011
- During May and June 2011, Jeremie Choquette is scheduled to work closely at NNDC on the final version of the code
- By July 2011 or so , this code will be handed over to NNDC
- Examples of two full A chains are available.